jueves, 21 de mayo de 2009

“ TEORIA DE LA ESTIMACION ESTADÍSTICA “

La teoría de muestreo puede emplearse para obtener información acerca de muestras obtenidas aleatoriamente de una población conocida. Sin embargo, desde un punto de vista practico, suele ser mas importante y ser capaz de inferir información acerca de una población a partir de muestras de ellas. Dichos problemas son tratados por la inferencia estadística que utiliza principios de muestreo. Un problema importante de la inferencia estadística es la estimación de parámetros poblacionales o simplemente parámetros ( como la media y la varianza poblacionales ), a partir de los estadísticos muéstrales correspondientes o estadísticos ( como la media y la varianza muestral.
Estimados sin Sesgo
Si la media de la distribución muestral de un estadístico es igual al parámetro poblacional correspondiente, el estadístico se denomina estimador sin sesgo del parámetro; de otra manera, es denominado estimador sesgado. Los valores correspondientes de dichos estadísticos se llaman estimados sin sesgo o sesgados, respectivamente.
1.- La media de la distribución muestral de las medias  es x , la media poblacional. Por lo tanto, la media muestral x es un estimado sin sesgo de la media poblacional .
2.- La media de la distribución muestral de las varianzas es :
s2 = ( N-1/ N ) 2
donde 2 es la varianza poblacional y N es el tamaño de la muestra .Entonces, la varianza muestral s2 es un estimado sesgado de la varianza poblacional 2. Usando la varianza modificada.
2 =( N/ N-1 )s2
Se encuentra que 2 = 2 , de modo que 2 es un estimado sin sesgo de 2 .Sin embargo  es un estimado de .En términos de esperanza matemática se podía decir que un estadístico no esta sesgado si su esperanza es igual al parámetro poblacional correspondiente. Por lo tanto, x y 2 no están sesgados , porque E
Estimados Eficientes
Si las distribuciones muéstrales de dos estadísticos tienen la misma media o esperanza matemática entonces el estadístico con la menor varianza se denomina estimador eficiente de la media , mientras que el otro estadístico se le llama estimador ineficiente. Los valores correspondientes de los estadísticos se conocen, respectivamente , como estimadores eficientes. Si se consideran todos los estadísticos posibles, cuyas distribuciones muéstrales tienen la misma media, aquel con la menor varianza suele denominarse el mejor o mas eficiente estimador de dicha media.
La distribución muestral de la media y la mediana tienen la misma media; a saber la media poblacional. Sin embargo, la varianza de la distribución muestral de las medias es mas pequeña que la varianza de la distribución muestral de las medianas . por lo tanto, la media muestral ofrece un estimado ineficiente de esta De todos los estadísticos que estiman la media poblacional, la media muestral ofrece el mejor o mas eficiente estimado. En la practica , suelen usarse los estimados ineficientes debido a la relativa facilidad con que se obtienen algunos de ellos.
Estimados por Punto y Estimados por Intervalo; su Confiabilidad
El estimado de un parámetro poblacional dado por un solo numero se denomina estimado puntual del parámetro. El estimado de un parámetro poblacional dado por dos números , entre los cuales se considera esta el parámetro, se denomina estimado por intervalo del parámetro. Los estimados por intervalo indican la precisión de un estimado y son, por lo tanto preferibles a los estimados por punto.
Ejemplo: Si se dice que una distancia medida es de 5.28 metros se esta dando un estimado por punto. Si por otro lado, la distancia es de 5.28 mas menos 0.03metros ( es decir , la distancia esta entre 5.25m y 5.31 m ) , se esta dando un estimado por intervalo .
La información sobre el error o precisión de un estimado se conoce como confiabilidad.
Estimados por Intervalo de Confianza de Parámetros Poblacionales
Sean s y s la media y la desviación estándar ( error estándar ), en ese orden, de la distribución muestral de un estadístico S. Entonces, si la distribución muestral de S es en formas aproximadas a la normal ( lo cual es verdadero para muchos estadísticos si el tamaño de la muestra es N mayor o menor que 30.
Intervalos de Confianza para Medias
Si el estadístico S es la media muestral x , entonces los limites de confianza de 95% y 99% para estimar la media poblacional  están dados por x mas menos 1.96 x y 2.50x respectivamente. De manera mas general , los limites de confianza están dados por x ± zc x donde zc que depende del nivel particular de confianza deseado , usando los valores de x obtenidos se ve que los limites de confianza para la media poblacional están dados por :
X ± Zc /
si el muestreo se lleva a cabo a partir de una población infinita o de una población finita con reemplazamiento y están dados por :
X ± Zc /
si el muestreo se realizo sin reempalzamiento de una población de tamaño finito Np . generalmente , la desviación estándar poblacional  es desconocida ; por consiguiente , para obtener los limites de confianza anteriores, se utiliza la estimación muestral  o s .Esta mostrara ser satisfactoria cuando N­ se mayor o menor que 30 para N menor que 30 , la aproximación es pobre y se debe usar la teoría de pequeñas muestras .
Intervalos de Confianza para Proporciones
Si el estadístico S es la proporción de “éxitos “ en una muestra de tamaño , obtenida de una población binomial en la que p es la proporción de éxitos es decir la probabilidad de éxito, entonces los limites de confianza para p están dados por la proporción de éxitos en la muestra de tamaño N. Usando los valores de p obtenidos, ve que los limites de confianza para la proporción poblacional están dados por :
P ± Zc
Si el muestreo se efectuó de una población finita o de una población infinita con reemplazamiento y están dados por :
P± Zc
Si el muestreo se hizo sin el reemplazamiento de una población de tamaño finito Np. Para calcular estos limites de confianza se puede usar el estimado muestral P que por lo general , mostrara ser satisfactorio si N es mayor o igual a 30.
Intervalos de Confianza para Diferencias y Sumas
Si S1 y S2 son dos estadísticos muéstrales con distribuciones de muestreo aproximadamente normales, entonces los limites de confianza se puede usar para la diferencia de los parámetros poblacionales correspondientes a S1 y S2 están dados por :
S1 y S2 ± zc s1 - s2
Intervalos de Confianza para Desviaciones Estándar
Los limites de confianza para la desviación estándar  de una población normalmente distribuida, estimados a partir de una muestra con desviación estándar s, están dados por :
S + - Zc s = s ± Zc /
Para calcular estos limites de confianza se utiliza s o  para estimar 
Error Probable
Los limites de confianza de 50% de los parámetros poblacionales correspondientes al estadístico S dados por S + - 0.675 s la cantidad de 0.675 s es conocida como error probable de la estimación.
“ Problemas Resueltos “
Estimados sin Sesgo y eficientes
1.- De un ejemplo de estimadores y estimados que sean a).- sin sesgo y eficientes , b).- sin sesgo e ineficientes y c).- sesgados e ineficientes
Solución
a).- La media maestral x y la varianza maestral modificada
2 =( N/ N-1 ) s2
b).- La media muestral y el estadístico muestral ½ (Q1 + Q3) donde Q1 y Q3 son los cuartiles inferior y superior , son dos de dichos ejemplos. Ambos estadísticos son estimados sin sesgo de la media poblacional, ya que la media de sus distribuciones muéstrales es la media poblacional.
c).- La desviación estándar muestral s , la desviación estándar modificada , la desviación media y el rango semiintercuartilar son cuatro de dichos ejemplos
2.- En una muestra de cinco mediciones , los registros de un científico para el diámetro de una esfera fueron 6.33, 6.37, 6.32, 6.37 centímetros. Determine estimados sin sesgo y eficientes de a) la media verdadera y b) la varianza verdadera.
Solución
a).- el estimado sin sesgo y eficiente de la media verdadera , es decir , la media poblacional es :
x = x / N = 6.33 + 6.37 + 6.36 +6.32 + 6.37 / 5 = 6.35 cm
b).- El estimado sin sesgo y eficiente de la varianza verdadera , es decir la varianza poblacional es :
2 = ( N / N - 1 ) s2
(6.33 - 6.35 )2 + ( 6.37 - 6.35 ) 2 + ( 6.32 - 6.35 ) 2 + ( 6.37 - 6.35 )2 / 5 - 1 = 5.5 x 10 - 4 cm2

Distribución Muestral

En estadística, la distribución muestral es lo que resulta de considerar todas las muestras posibles que pueden ser tomadas de una población. Su estudio permite calcular la probabilidad que se tiene, dada una sola muestra, de acercarse al parámetro de la población. Mediante la distribución muestral se puede estimar el error para un tamaño de muestra dado.
La fórmula para la distribución muestral dependerá de la distribución de la población, del estadístico y del tamaño de la muestra.

Técnicas de muestreo

Existen dos métodos para seleccionar muestras de poblaciones: el muestreo no aleatorio o de juicio y el muestreo aleatorio o de probabilidad. En este último todos los elementos de la población tienen la oportunidad de ser escogidos en la muestra. Una muestra seleccionada por muestreo de juicio se basa en la experiencia de alguien con la población. Algunas veces una muestra de juicio se usa como guía o muestra tentativa para decidir como tomar una muestra aleatoria más adelante. Las muestras de juicio contribuyen con el análisis estadístico el cual es necesario para hacer muestras de probabilidad.

Muestreo probabilístico
Forman parte de este tipo de muestreo todos aquellos métodos para los que puede calcularse la probabilidad de extracción de cualquiera de las muestras posibles. Este conjunto de técnicas de muestreo es el más aconsejable, aunque en ocasiones no es posible optar por él. En este caso se habla de muestras probabilísticas, pues no es razonable hablar de muestras representativas dado que no conocemos las características de la población.

Muestreo Aleatorio Simple
Es la extracción de una muestra de una población finita, en el que el proceso de extracción es tal que garantiza a cada uno de los elementos de la población la misma oportunidad de ser incluidos en dicha muestra. Esta condición garantiza la representatividad de la muestra porque si en la población un determinado porcentaje de individuos presenta la característica A, la extracción aleatoria garantiza matemáticamente que por término medio se obtendrá el mismo porcentaje de datos muestrales con esa característica.
El muestreo aleatorio simple puede ser de tres tipos:
Sin reposición de los elementos: cada elemento extraído se descarta para la subsiguiente extracción. Por ejemplo, si se extrae una muestra de una "población" de bombillas para estimar la vida media de las bombillas que la integran, no será posible medir más que una vez la bombilla seleccionada.
Con reposición de los elementos: las observaciones se realizan con reemplazamiento de los individuos, de forma que la población es idéntica en todas las extracciones. En poblaciones muy grandes, la probabilidad de repetir una extracción es tan pequeña que el muestreo puede considerarse sin reposición aunque, realmente, no lo sea.
con reposicion multiple:En poblaciones muy grandes, la probabilidad de repetir una extracción es tan pequeña que el muestreo puede considerarse sin reposición.cada elemento extraído se descarta para la subsiguiente extracción.
Para realizar este tipo de muestreo, y en determinadas situaciones, es muy útil la extracción de números aleatorios mediante ordenadores, calculadoras o tablas construidas al efecto.
tambien muestro es donde se recopilan datos por medio de un metodo cientifico como lo puede mencionar la dr.l.espinal de inglaterra como por ejemplo el numero de datos de un salon

Muestreo Estratificado

Consiste en la división previa de la población de estudio en grupos o clases que se suponen homogéneos respecto a característica a estudiar. A cada uno de estos estratos se le asignaría una cuota que determinaría el número de miembros del mismo que compondrán la muestra. Dentro de cada estrato se suele usar la técnica de muestreo sistemático, ya que con aquella suelen ser las técnicas más usadas en la practica.
Según la cantidad de elementos de la muestra que se han de elegir de cada uno de los estratos, existen dos técnicas de muestreo estratificado:
Asignación proporcional: el tamaño de cada estrato en la muestra es proporcional a su tamaño en la población.
Asignación óptima: la muestra recogerá más individuos de aquellos estratos que tengan más variabilidad. Para ello es necesario un conocimiento previo de la población.
Por ejemplo, para un estudio de opinión, puede resultar interesante estudiar por separado las opiniones de hombres y mujeres pues se estima que, dentro de cada uno de estos grupos, puede haber cierta homogeneidad. Así, si la población está compuesta de un 55% de mujeres y un 45% de hombres, se tomaría una muestra que contenga también esa misma proporción.
Para una descripción general del muestreo estratificado y los métodos de inferencia asociados con este procedimiento, suponemos que la población está dividida en h subpoblaciones o estratos de tamaños conocidos N1, N2,...,Nh tal que las unidades en cada estrato sean homogéneas respecto a la característica en cuestión. La media y la varianza desconocidas para el i-ésimo estrato son denotadas por mi y s12, respectivamente.

Muestreo Sistemático
Se utiliza cuando el universo o población es de gran tamaño, o ha de extenderse en el tiempo. Primero hay que identificar las unidades y relacionarlas con el calendario (cuando proceda). Luego hay que calcular una constante, que se denomina coeficiente de elevación K= N/n; donde N es el tamaño del universo y n el tamaño de la muestra. Determinar en qué fecha se producirá la primera extracción, para ello hay que elegir al azar un número entre 1 y K; de ahí en adelante tomar uno de cada K a intervalos regulares. Ocasionalmente, es conveniente tener en cuenta la periodicidad del fenómeno.
Esto quiere decir que si tenemos un determinado número de personas que es la población y queremos escoger de esa población un númeno más pequeño el cual es la muestra, dividimos el número de la población por el número de la muestra que queremos tomar y el resultado de esta operación será el intervalo, entonces escogemos un número al azar desde uno hasta el número del intervalo, y a partir de este número escogemos los demás siguiendo el orden del intervalo.

Muestreo por Estadios Múltiples
Esta técnica es la única opción cuando no se dispone de lista completa de la población de referencia o bien cuando por medio de la técnica de muestreo simple o estratificado se obtiene una muestra con unidades distribuidas de tal forma que resultan de difícil acceso. En el muestreo a estadios múltiples se subdivide la población en varios niveles ordenados que se extraen sucesivamente por medio de un procedimiento de embudo. El muestreo se desarrolla en varias fases o extracciones sucesivas para cada nivel.
Por ejemplo, si tenemos que construir una muestra de profesores de primaria en un país determinado, éstos pueden subdividirse en unidades primarias representadas por circunscripciones didácticas y unidades secundarias que serían los propios profesores. En primer lugar extraemos una muestra de las unidades primarias (para lo cual debemos tener la lista completa de estas unidades) y en segundo lugar extraemos aleatoriamente una muestra de unidades secundarias de cada una de las primarias seleccionadas en la primera extracción.

Muestreo por Conglomerados

Técnica similar al muestreo por estadios múltiples, se utiliza cuando la población se encuentra dividida, de manera natural, en grupos que se supone que contienen toda la variabilidad de la población, es decir, la representan fielmente respecto a la característica a elegir, pueden seleccionarse sólo algunos de estos grupos o conglomerados para la realización del estudio.
Dentro de los grupos seleccionados se ubicarán las unidades elementales, por ejemplo, las personas a encuestar, y podría aplicársele el instrumento de medición a todas las unidades, es decir, los miembros del grupo, o sólo se le podría aplicar a algunos de ellos, seleccionados al azar. Este método tiene la ventaja de simplificar la recogida de información muestral.
Cuando, dentro de cada conglomerado, se extraen los individuos que formarán parte de la muestra por m.a.s., el muestreo se llama bietápico.
Las ideas de estratificación y conglomerados son opuestas. El primer método funciona mejor cuanto más homogénea es la población respecto del estrato, aunque más diferentes son éstos entre sí. En el segundo, ocurre lo contrario. Los conglomerados deben presentar toda la variabilidad, aunque deben ser muy parecidos entre sí.

Homogeneidad de las poblaciones o sus subgrupos

Homogéneo siginifica, en el contexto de la estratificación, que no hay mucha variabilidad. Los estratos funcionan mejor cuanto más homogéneos son cada uno de ellos respecto a la característica a medir. Por ejemplo, si se estudia la estatura de una población, es bueno distinguir entre los estratos mujeres y hombres porque se espera que, dentro de ellos, haya menos variabilidad, es decir, sean menos heterogéneos. Dicho de otro modo, no hay tantas diferencias entre unas estaturas y otras dentro del estrato que en la población total.
Por el contrario, la heterogeneidad hace inútil la división en estratos. Si se dan las mismas diferencias dentro del estrato que en toda la población, no hay por qué usar este método de muestreo. En los casos en los que existan grupos que contengan toda la variabilidad de la población, lo que se construyen son conglomerados, que ahorran algo del trabajo que supondría analizar toda la población. En resumen, los estratos y los conglomerados funcionan bajo principios opuestos: los primeros son mejores cuanto más homogéneo es el grupo respecto a la característica a estudiar y los conglomerados, si representan fielmente a la población, esto es, contienen toda su viariabilidad, o sea, son heterogéneos.

Muestreo Juicio
Aquél para el que no puede calcularse la probabilidad de extracción de una determinada muestra.Se busca seleccionar a individuos que se juzga de antemano tienen un conocimiento profundo del tema bajo estudio, por lo tanto, se considera que la información aportada por esas personas es vital para la toma de decisiones.

Muestreo por Cuotas

Es la técnica más difundida sobre todo en estudios de mercado y sondeos de opinión. En primer lugar es necesario dividir la población de referencia en varios estratos definidos por algunas variables de distribución conocida (como el género o la edad). Posteriormente se calcula el peso proporcional de cada estrato, es decir, la parte proporcional de población que representan. Finalmente se multiplica cada peso por el tamaño de n de la muestra para determinar la cuota precisa en cada estrato. Se diferencia del muestreo estratificado en que una vez determinada la cuota, el investigador es libre de elegir a los sujetos de la muestra dentro de cada estrato.

Muestreo de Clandestinidad
Indicado para estudios de poblaciones clandestinas, minoritarias o muy dispersas pero en contacto entre sí. Consiste en identificar sujetos que se incluirán en la muestra a partir de los propios entrevistados. Partiendo de una pequeña cantidad de individuos que cumplen los requisitos necesarios estos sirven como localizadores de otros con características análogas.

Muestreo subjetivo por Decisión Razonada

En este caso las unidades de la muestra se eligen en función de algunas de sus características de manera racional y no casual. Una variante de esta técnica es el muestreo compensado o equilibrado, en el que se seleccionan las unidades de tal forma que la media de la muestra para determinadas variables se acerque a la media de la población.

Muestreo en Estadística

En estadística se conoce como muestreo a la técnica para la selección de una muestra a partir de una población.
Al elegir una muestra se espera que sus propiedades sean extrapolables a la población. Este proceso permite ahorrar recursos, obteniendo resultados parecidos que si se realizase un estudio de toda la población.
Cabe mencionar que para que el muestreo sea válido y se pueda realizar un estudio fiable (que represente a la población), debe cumplir ciertos requisitos, lo que lo convertiría en una muestra representativa.
En el muestreo, si el tamaño de la muestra es más pequeño que el tamaño de la población, se puede extraer dos o más muestras de la misma población. Al conjunto de muestras que se pueden obtener de la población se denomina espacio muestral. La variable que asocia a cada muestra su probabilidad de extracción, sigue la llamada distribución muestral.